\[\boxed{\mathbf{241}\mathbf{.}}\]
\[1)\ \left\{ \begin{matrix} 4^{x} \bullet 2^{y} = 32 \\ 3^{8x + 1} = 3^{3y} \\ \end{matrix} \right.\ \]
\[1)\ 4^{x} \bullet 2^{y} = 32\]
\[2^{2x} \bullet 2^{y} = 2^{5}\]
\[2^{2x + y} = 2^{5}\]
\[2x + y = 5\]
\[y = 5 - 2x.\]
\[2)\ 3^{8x + 1} = 3^{3(5 - 2x)}\]
\[8x + 1 = 3(5 - 2x)\]
\[8x + 1 = 15 - 6x\]
\[14x = 14\]
\[x = 1.\]
\[y = 5 - 2 \bullet 1 = 5 - 2 = 3.\]
\[Ответ:\ \ (1;\ \ 3).\]
\[2)\ \left\{ \begin{matrix} 3^{3x - 2y} = 81\ \ \\ 3^{6x} \bullet 3^{y} = 27 \\ \end{matrix} \right.\ \]
\[1)\ 3^{6x} \bullet 3^{y} = 27\]
\[3^{6x + y} = 3^{3}\]
\[6x + y = 3\]
\[y = 3 - 6x.\]
\[2)\ 3^{3x - 2(3 - 6x)} = 81\]
\[3^{3x - 6 + 12x} = 3^{4}\]
\[3x - 6 + 12x = 4\]
\[15x = 10\]
\[x = \frac{10}{15} = \frac{2}{3}.\]
\[y = 3 - 6 \bullet \frac{2}{3} = 3 - 4 = - 1.\]
\[Ответ:\ \ \left( \frac{2}{3}; - 1 \right).\]