\[\boxed{\mathbf{210}\mathbf{.}}\]
\[1)\ 3 \bullet 9^{x} = 81\]
\[3 \bullet 3^{2x} = 3^{4}\]
\[3^{1 + 2x} = 3^{4}\]
\[1 + 2x = 4\]
\[2x = 3\]
\[x = 1,5\]
\[Ответ:\ \ x = 1,5.\]
\[2)\ 2 \bullet 4^{x} = 64\]
\[2 \bullet 2^{2x} = 2^{6}\]
\[2^{1 + 2x} = 2^{6}\]
\[1 + 2x = 6\]
\[2x = 5\]
\[x = 2,5\]
\[Ответ:\ \ x = 2,5.\]
\[3)\ 3^{x + \frac{1}{2}} \bullet 3^{x - 2} = 1\]
\[3^{x + \frac{1}{2}} = \frac{1}{3^{x - 2}}\]
\[3^{x + \frac{1}{2}} = 3^{- (x - 2)}\]
\[x + \frac{1}{2} = - (x - 2)\]
\[x + 0,5 = 2 - x\]
\[2x = 1,5\]
\[x = 0,75\]
\[Ответ:\ \ x = 0,75.\]
\[4)\ {0,5}^{x + 7} \bullet {0,5}^{1 - 2x} = 2\]
\[{0,5}^{x + 7 + 1 - 2x} = \left( \frac{1}{2} \right)^{- 1}\]
\[{0,5}^{8 - x} = {0,5}^{- 1}\]
\[8 - x = - 1\]
\[- x = - 9\]
\[x = 9\]
\[Ответ:\ \ x = 9.\]
\[5)\ {0,6}^{x} \bullet {0,6}^{3} = \frac{{0,6}^{2x}}{{0,6}^{5}}\]
\[{0,6}^{x + 3} = {0,6}^{2x - 5}\]
\[x + 3 = 2x - 5\]
\[- x = - 8\]
\[x = 8\]
\[Ответ:\ \ x = 8.\]
\[6)\ 6^{3x} \bullet \frac{1}{6} = 6 \bullet \left( \frac{1}{6} \right)^{2x}\]
\[\frac{6^{3x}}{6^{1}} = \frac{6^{1}}{6^{2x}}\]
\[6^{3x - 1} = 6^{1 - 2x}\]
\[3x - 1 = 1 - 2x\]
\[5x = 2\]
\[x = 0,4\]
\[Ответ:\ \ x = 0,4.\]