\[\boxed{\mathbf{182}\mathbf{.}}\]
\[1)\ 2^{x^{2} + 3x} = 2^{2}\text{\ \ }и\ \ x^{2} + 3x = 2\]
\[2^{x^{2} + 3x} = 2^{2}\]
\[x^{2} + 3x = 2\]
\[Ответ:\ \ равносильны.\]
\[2)\ \sqrt{x^{2} + 3x} = \sqrt{2}\text{\ \ }и\ \ \]
\[x^{2} + 3x = 2\]
\[\left( \sqrt{x^{2} + 3x} \right)^{2} = \left( \sqrt{2} \right)^{2}\]
\[x^{2} + 3x = 2\]
\[x^{2} + 3x - 2 = 0\]
\[D = 3^{2} + 4 \bullet 2 = 9 + 8 = 17\]
\[x_{1} = \frac{- 3 - \sqrt{17}}{2} \approx - 3,5;\text{\ \ }\]
\[x_{2} = \frac{- 3 + \sqrt{17}}{2} \approx 0,5.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x^{2} + 3x \geq 0\]
\[(x + 3)x \geq 0\]
\[x \leq - 3;\text{\ \ }x \geq 0.\]
\[Ответ:\ \ раносильны.\]
\[3)\ \sqrt[3]{x + 18} = \sqrt[3]{2 - x}\text{\ \ }и\ \ \]
\[x + 18 = 2 - x\]
\[\left( \sqrt[3]{x + 18} \right)^{3} = \left( \sqrt[3]{2 - x} \right)^{3}\]
\[x + 18 = 2 - x\]
\[Ответ:\ \ равносильны.\]
\[\ \]