\[\boxed{\mathbf{167.}}\]
\[1)\ \sqrt{x - 2} > 3\]
\[\left( \sqrt{x - 2} \right)^{2} > 3^{2}\]
\[x - 2 > 9\]
\[x > 11.\]
\[Ответ:\ \ x > 11.\]
\[2)\ \sqrt{x - 2} < 1\]
\[\left( \sqrt{x - 2} \right)^{2} < 1^{2}\]
\[x - 2 < 1\]
\[x < 3.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x - 2 \geq 0\]
\[x \geq 2.\]
\[Ответ:\ \ 2 \leq x < 3.\]
\[3)\ \sqrt{3 - x} < 5\]
\[\left( \sqrt{3 - x} \right)^{2} < 5^{2}\]
\[3 - x < 25\]
\[- x < 22\]
\[x > - 22.\]
\[Выражение\ имеет\ смысл\ при:\]
\[3 - x \geq 0\]
\[x \leq 3.\]
\[Ответ:\ \ - 22 < x \leq 3.\]
\[4)\ \sqrt{4 - x} > 3\]
\[\left( \sqrt{4 - x} \right)^{2} > 3^{2}\]
\[4 - x > 9\]
\[- x > 5\]
\[x < - 5.\]
\[Ответ:\ \ x < - 5.\]
\[5)\ \sqrt{2x - 3} > 4\]
\[\left( \sqrt{2x - 3} \right)^{2} > 4^{2}\]
\[2x - 3 > 16\]
\[2x > 19\]
\[x > 9,5.\]
\[Ответ:\ \ x > 9,5.\]
\[6)\ \sqrt{x + 1} \geq \frac{2}{3}\]
\[\left( \sqrt{x + 1} \right)^{2} \geq \left( \frac{2}{3} \right)^{2}\]
\[x + 1 \geq \frac{4}{9}\]
\[9(x + 1) \geq 4\]
\[9x + 9 \geq 4\]
\[9x \geq - 5\]
\[x \geq - \frac{5}{9}.\]
\[Ответ:\ \ x \geq - \frac{5}{9}.\]
\[7)\ \sqrt{3x - 5} < 5\]
\[\left( \sqrt{3x - 5} \right)^{2} < 5^{2}\]
\[3x - 5 < 25\]
\[3x < 30\]
\[x < 10.\]
\[Выражение\ имеет\ смысл\ при:\]
\[3x - 5 \geq 0\]
\[3x \geq 5\]
\[x \geq \frac{5}{3}.\]
\[Ответ:\ \ 1\frac{2}{3} \leq x < 10.\]
\[8)\ \sqrt{4x + 5} \leq \frac{1}{2}\]
\[\left( \sqrt{4x + 5} \right)^{2} \leq \left( \frac{1}{2} \right)^{2}\]
\[4x + 5 \leq \frac{1}{4}\]
\[4(4x + 5) \leq 1\]
\[16x + 20 \leq 1\]
\[16x \leq - 19\]
\[x \leq - \frac{19}{16}.\]
\[Выражение\ имеет\ смысл\ при:\]
\[4x + 5 \geq 0\]
\[4x \geq - 5\]
\[x \geq - \frac{5}{4}.\]
\[Ответ:\ - 1\frac{1}{4} \leq x \leq - 1\frac{3}{16}.\]