\[\boxed{\mathbf{1621}\mathbf{.}}\]
\[\mathbf{Н}а\ отрезке\ \lbrack 0;\ 2\rbrack:\]
\[y = x^{2} + (a + 4)x + 2a + 3.\]
\[y^{'}(x) =\]
\[= \left( x^{2} \right)^{'} + (a + 4)(x)^{'} + (2a + 3)^{'} =\]
\[= 2x + (a + 4) + 0 = 2x + a + 4.\]
\[Промежуток\ возрастания:\]
\[2x + a + 4 > 0\]
\[2x > - a - 4\]
\[x > - \frac{a + 4}{2}.\]
\[Вершина\ лежит\ на\ отрезке\ \lbrack 0;\ 2\rbrack:\]
\[0 \leq - \frac{a + 4}{2} \leq 2\]
\[- 2 \leq \frac{a + 4}{2} \leq 0\]
\[- 4 \leq a + 4 \leq 0\]
\[- 8 \leq a \leq - 4.\]
\[На\ отрезке\ \lbrack 0;\ 2\rbrack:\]
\[\frac{1}{4}(a + 4)^{2} - \frac{1}{2}(a + 4)^{2} + 2a + 7 = 0\]
\[- \frac{1}{4}(a + 4)^{2} + 2a + 7 = 0\]
\[- \frac{1}{4}\left( a^{2} + 8a + 16 \right) + 2a + 7 = 0\]
\[- \frac{1}{4}a^{2} - 2a - 4 + 2a + 7 = 0\]
\[- \frac{1}{4}a^{2} + 3 = 0\ \ \ \ \ | \bullet ( - 4)\]
\[a^{2} - 12 = 0\]
\[a^{2} = 12\]
\[a = \pm \sqrt{12} = \pm 2\sqrt{3}.\]
\[Правее\ отрезка\ \lbrack 0;\ 2\rbrack:\]
\[x = 2\ \ и\ \ a \leq - 8;\]
\[- 4 = 2 \bullet 2 + 2(a + 4) + 2a + 3\]
\[- 4 = 4 + 2a + 8 + 2a + 3\]
\[- 4 = 4a + 15\]
\[4a = - 19\]
\[a = - \frac{19}{4} = - 4\frac{3}{4}.\]
\[Левее\ отрезка\ \lbrack 0;\ 2\rbrack:\]
\[x = 0\ \ и\ \ a \geq - 4;\]
\[- 4 = 0^{2} + (a + 4) \bullet 0 + 2a + 3\]
\[- 4 = 2a + 3\]
\[2a = - 7\]
\[a = - 3,5.\]
\[Ответ:\ \ a = - 3,5.\]