\[\boxed{\mathbf{1616}\mathbf{.}}\]
\[x \in ( - \infty;\ 0):\]
\[\log_{\frac{1}{2}}\left( x^{2} + ax + 1 \right) < 1\]
\[\log_{\frac{1}{2}}\left( x^{2} + ax + 1 \right) < \log_{\frac{1}{2}}\left( \frac{1}{2} \right)\]
\[x^{2} + ax + 1 > \frac{1}{2}\]
\[x^{2} + ax + 0,5 > 0\]
\[D = a^{2} - 4 \bullet 0,5 = a^{2} - 2\]
\[Ветви\ направлены\ вверх;\]
\[верно\ при\ D < 0:\]
\[a^{2} - 2 < 0\]
\[a^{2} < 2\]
\[- \sqrt{2} < a < \sqrt{2}.\]
\[x = \frac{- a \pm \sqrt{a^{2} - 2}}{2};\]
\[x < \frac{- a - \sqrt{a^{2} - 2}}{2};\]
\[x > \frac{- a + \sqrt{a^{2} - 2}}{2}.\]
\[x < 0 - неравенство\ верно\ при\ \]
\[любых\ значениях\ x:\]
\[\frac{- a - \sqrt{a^{2} - 2}}{2} > 0\]
\[- a - \sqrt{a^{2} - 2} > 0\]
\[- a > \sqrt{a^{2} - 2}.\]
\[a < 0:\]
\[- a^{2} < a^{2} - 2\]
\[- 2a^{2} < - 2\]
\[a^{2} > 1\]
\[a < - 1\ \ и\ \ a > 1.\]
\[a > 0 - корней\ нет.\]
\[Ответ:\ \ a < \sqrt{2}.\]