Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 1611

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 1611

\[\boxed{\mathbf{1611}\mathbf{.}}\]

\[1)\ \frac{8x^{2} - 4x + 3}{4x^{2} - 2x + 1} \leq a\]

\[= \frac{2 - 8x}{\left( 4x^{2} - 2x + 1 \right)^{2}}.\]

\[Промежуток\ возрастания:\]

\[2 - 8x > 0\]

\[1 - 4x > 0\]

\[4x < 1\]

\[x < \frac{1}{4};\]

\[x = \frac{1}{4} - точка\ максимума.\]

\[f\left( \frac{1}{4} \right) = \frac{8 \bullet \frac{1}{16} - 4 \bullet \frac{1}{4} + 3}{4 \bullet \frac{1}{16} - 2 \bullet \frac{1}{4} + 1} =\]

\[= \frac{0,5 - 1 + 3}{0,25 - 0,5 + 1} = \frac{2,5}{0,75} =\]

\[= \frac{250}{75} = 3\frac{25}{75} = 3\frac{1}{3}.\]

\[Ответ:\ \ a \geq 3\frac{1}{3}.\]

\[2)\ \frac{3x^{2} - 4x + 8}{9x^{2} - 12x + 16} \geq a\]

\[= \frac{32 - 48x}{\left( 9x^{2} - 12x + 16 \right)^{2}}.\]

\[Промежуток\ возрастания:\]

\[32 - 48x > 0\]

\[2 - 3x > 0\]

\[3x < 2\]

\[x < \frac{2}{3};\]

\[x = \frac{2}{3} - точка\ максимума\ \]

\[(не\ подходит).\]

\[\lim_{x \rightarrow \infty}\frac{3x^{2} - 4x + 8}{9x^{2} - 12x + 16} =\]

\[= \lim_{x \rightarrow \infty}\frac{3 - \frac{4}{x} + \frac{8}{x^{2}}}{9 - \frac{12}{x} + \frac{16}{x^{2}}} =\]

\[= \frac{3 - 0 + 0}{9 - 0 + 0} = \frac{3}{9} = \frac{1}{3}.\]

\[Ответ:\ \ a \leq \frac{1}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам