\[\boxed{\mathbf{160.}}\]
\[1)\ \sqrt[3]{x - 2} = 2\]
\[x - 2 = 2^{3}\]
\[x - 2 = 8\]
\[x = 8 + 2\]
\[x = 10\]
\[Ответ:\ \ x = 10.\]
\[2)\ \sqrt[3]{2x + 7} = \sqrt[3]{3(x - 1)}\]
\[2x + 7 = 3(x - 1)\]
\[2x + 7 = 3x - 3\]
\[2x - 3x = - 3 - 7\]
\[- x = - 10\]
\[x = 10\]
\[Ответ:\ \ x = 10.\]
\[3)\ \sqrt[4]{25x^{2} - 144} = x\]
\[25x^{2} - 144 = x^{4}\]
\[x^{4} - 25x^{2} + 144 = 0\]
\[Пусть\ y = x^{2}:\]
\[y^{2} - 25y + 144 = 0\]
\[D = 25^{2} - 4 \bullet 144 =\]
\[= 625 - 576 = 49\]
\[y_{1} = \frac{25 - 7}{2} = 9;\ \ \ \ \ \ \]
\[y_{2} = \frac{25 + 7}{2} = 16;\]
\[x_{1} = \pm \sqrt{9} = \pm 3;\ \ \ \ \ \text{\ \ }\]
\[x_{2} = \pm \sqrt{16} = \pm 4.\]
\[Проверим:\]
\[\sqrt[4]{25 \bullet ( \pm 3)^{2} - 144} =\]
\[= \sqrt[4]{225 - 144} = \sqrt[4]{81} = 3;\]
\[\sqrt[4]{25 \bullet ( \pm 4)^{2} - 144} =\]
\[= \sqrt[4]{400 - 144} = \sqrt[4]{256} = 4.\]
\[Ответ:\ \ x_{1} = 3;\ \ x_{2} = 4.\]
\[4)\ x^{2} = \sqrt{19x^{2} - 34}\]
\[x^{4} = 19x^{2} - 34\]
\[x^{4} - 19x^{2} + 34 = 0\]
\[Пусть\ y = x^{2}:\]
\[y^{2} - 19y + 34 = 0\]
\[D = 19^{2} - 4 \bullet 34 = 361 - 136 =\]
\[= 225\]
\[y_{1} = \frac{19 - 15}{2} = 2;\ \ \]
\[y_{2} = \frac{19 + 15}{2} = 17;\]
\[x_{1} = \pm \sqrt{2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{\ \ }x_{2} = \pm \sqrt{17}.\]
\[Проверим:\]
\[\sqrt{19 \bullet \left( \pm \sqrt{2} \right)^{2} - 34} =\]
\[= \sqrt{38 - 34} = \sqrt{4} = 2 = \left( \pm \sqrt{2} \right)^{2};\]
\[\sqrt{19 \bullet \left( \pm \sqrt{17} \right)^{2} - 34} =\]
\[= \sqrt{323 - 34} = \sqrt{289} = 17 =\]
\[= \left( \pm \sqrt{17} \right)^{2}.\]
\[Ответ:\ \ x_{1} = \pm \sqrt{2};\ \ x_{2} = \pm \sqrt{17}.\]