\[\boxed{\mathbf{1597}\mathbf{.}}\]
\[1)\ 9 \bullet 4^{\frac{1}{x}} + 5 \bullet 6^{\frac{1}{x}} = 4 \bullet 9^{\frac{1}{x}}\]
\[3^{2} \bullet 2^{\frac{2}{x}} + 5 \bullet 2^{\frac{1}{x}} \bullet 3^{\frac{1}{x}} = 2^{2} \bullet 3^{\frac{2}{x}}\ \ \ \ \ |\ :3^{\frac{2}{x}}\]
\[3^{2} \bullet \left( \frac{2}{3} \right)^{\frac{2}{x}} + 5 \bullet \left( \frac{2}{3} \right)^{\frac{1}{x}} = 2^{2}\]
\[9\left( \frac{2}{3} \right)^{\frac{2}{x}} + 5\left( \frac{2}{3} \right)^{\frac{1}{x}} - 4 = 0\]
\[y = \left( \frac{2}{3} \right)^{\frac{1}{x}}:\]
\[9y^{2} + 5y - 4 = 0\]
\[D = 25 + 144 = 169\]
\[y_{1} = \frac{- 5 - 13}{2 \bullet 9} = - \frac{18}{18} = - 1;\]
\[y_{2} = \frac{- 5 + 13}{2 \bullet 9} = \frac{8}{18} = \frac{4}{9}.\]
\[1)\ \left( \frac{2}{3} \right)^{\frac{1}{x}} = - 1\]
\[корней\ нет.\]
\[2)\ \left( \frac{2}{3} \right)^{\frac{1}{x}} = \frac{4}{9}\]
\[\left( \frac{2}{3} \right)^{\frac{1}{x}} = \left( \frac{2}{3} \right)^{2}\]
\[\frac{1}{x} = 2\]
\[x = \frac{1}{2}.\]
\[Ответ:\ \ x = \frac{1}{2}.\]
\[2)\log_{2}\left( x^{2} - 3 \right) - \log_{2}(6x - 10) + 1 = 0\]
\[\log_{2}\frac{x^{2} - 3}{6x - 10} = \log_{2}2^{- 1}\]
\[\frac{x^{2} - 3}{6x - 10} = \frac{1}{2}\]
\[2\left( x^{2} - 3 \right) = 6x - 10\]
\[2x^{2} - 6 - 6x + 10 = 0\]
\[2x^{2} - 6x + 4 = 0\]
\[x^{2} - 3x + 2 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{3 - 1}{2} = 1;\]
\[x_{2} = \frac{3 + 1}{2} = 2.\]
\[Имеет\ смысл\ при:\]
\[x^{2} - 3 > 0\]
\[x^{2} > 3\]
\[x < - \sqrt{3};\ \ x > \sqrt{3}.\]
\[6x - 10 > 0\]
\[3x - 5 > 0\]
\[3x > 5\]
\[x > \frac{5}{3}.\]
\[Ответ:\ \ x = 2.\]
\[3)\ 2\log_{2}x - 2\log_{2}\frac{1}{\sqrt{2}} = 3\sqrt{\log_{2}x}\]
\[2\log_{2}x - \log_{2}\frac{1}{2} = 3\sqrt{\log_{2}x}\]
\[2\log_{2}x - 3\sqrt{\log_{2}x} - ( - 1) = 0\]
\[y = \sqrt{\log_{2}x}:\]
\[2y^{2} - 3y + 1 = 0\]
\[D = 3^{2} - 4 \bullet 2 = 9 - 8 = 1\]
\[y_{1} = \frac{3 - 1}{2 \bullet 2} = \frac{1}{2};\]
\[y_{2} = \frac{3 + 1}{2 \bullet 2} = 1.\]
\[1)\ \sqrt{\log_{2}x} = \frac{1}{2}\]
\[\log_{2}x = \frac{1}{4}\]
\[\log_{2}x = \log_{2}2^{\frac{1}{4}}\]
\[x = \sqrt[4]{2}.\]
\[2)\ \sqrt{\log_{2}x} = 1\]
\[\log_{2}x = 1\]
\[\log_{2}x = \log_{2}2^{1}\]
\[x = 2.\]
\[Имеет\ смысл\ при:\]
\[x > 0.\]
\[\log_{2}x \geq 0\]
\[\log_{2}x \geq \log_{2}2^{0}\]
\[x \geq 1.\]
\[Ответ:\ \ x = \sqrt[4]{2};\ \ x = 2.\]
\[4)\log_{x}\left( 2x^{2} - 3x - 4 \right) = 2\]
\[\log_{x}\left( 2x^{2} - 3x - 4 \right) = \log_{x}x^{2}\]
\[2x^{2} - 3x - 4 = x^{2}\]
\[x^{2} - 3x - 4 = 0\]
\[D = 9 + 16 = 25\]
\[x_{1} = \frac{3 - 5}{2} = - 1;\]
\[x_{2} = \frac{3 + 5}{2} = 4.\]
\[Имеет\ смысл\ при:\]
\[x > 0\ \ и\ \ x \neq 1.\]
\[Проверка:\]
\[\log_{4}\left( 2 \bullet 4^{2} - 3 \bullet 4 - 4 \right) =\]
\[= \log_{4}(32 - 12 - 4) =\]
\[= \log_{4}16 = 2.\]
\[Ответ:\ \ x = 4.\]