\[\boxed{\mathbf{1592}\mathbf{.}}\]
\[f(x) = 0,5x^{2} - 2x + 2;\]
\[f^{'}(x) = 0,5\left( x^{2} \right)^{'} - (2x - 2)^{'} =\]
\[= 0,5 \bullet 2x - 2 = x - 2;\]
\[\text{\ A}\left( 1;\ \frac{1}{2} \right):\]
\[f^{'}(1) = 1 - 2 = - 1;\]
\[f(1) = 0,5 \bullet 1^{2} - 2 \bullet 1 + 2 =\]
\[= 0,5 - 2 + 2 = 0,5;\]
\[y = 0,5 - 1(x - 1) =\]
\[= 0,5 - x + 1 = 1,5 - x.\]
\[B(4;\ 2):\]
\[f^{'}(4) = 4 - 2 = 2;\]
\[f(4) = 0,5 \bullet 4^{2} - 2 \bullet 4 + 2 =\]
\[= 8 - 8 + 2 = 2;\]
\[y = 2 + 2(x - 4) =\]
\[= 2 + 2x - 8 = 2x - 6.\]
\[Пересечение\ касательных:\]
\[1,5 - x = 2x - 6\]
\[- 3x = - 7,5\]
\[x = 2,5.\]
\[Площадь:\]
\[= - \frac{25}{8} + \frac{55}{4} - \frac{80}{4} + \frac{21}{2} =\]
\[= \frac{- 25 - 50 + 84}{8} = \frac{9}{8} = 1\frac{1}{8}.\]
\[Ответ:\ \ 1\frac{1}{8}.\]