\[\boxed{\mathbf{1588}\mathbf{.}}\]
\[f(x) = - \frac{12}{x};\ \ A(3;\ - 4):\]
\[f(3) = - \frac{12}{3} = - 4.\]
\[Касательная\ в\ точке\ A:\]
\[f^{'}(x) = - 12 \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= - 12 \bullet \left( - \frac{1}{x^{2}} \right) = \frac{12}{x^{2}};\]
\[f^{'}(3) = \frac{12}{3^{2}} = \frac{4}{3};\]
\[y = - 4 + \frac{4}{3}(x - 3) =\]
\[= - 4 + \frac{4}{3}x - 4 = \frac{4}{3}x - 8.\]
\[Уравнение\ окружности:\]
\[x^{2} + (y - r)^{2} = r^{2}\]
\[x^{2} + y^{2} - 2yr + r^{2} - r^{2} = 0\]
\[x^{2} + y^{2} - 2yr = 0.\]
\[Окружность\ касается\ прямой\ l:\]
\[x^{2} + \left( \frac{4}{3}x - 8 \right)^{2} - 2r\left( \frac{4}{3}x - 8 \right) = 0\]
\[= 576r^{2} - 5184r - 20\ 736 =\]
\[= 64\left( 9r^{2} - 81r - 324 \right).\]
\[Одно\ решение\ при\ D = 0:\]
\[9r^{2} - 81r - 324 = 0\]
\[D = 6561 + 11\ 664 = 18\ 225\]
\[r_{1} = \frac{81 - 135}{2 \bullet 9} = - \frac{54}{18} = - 3;\]
\[r_{2} = \frac{81 + 135}{2 \bullet 9} = \frac{216}{18} = 12.\]
\[Ответ:\ \ r = 3\ или\ r = 12.\]