\[\boxed{\mathbf{1572}\mathbf{.}}\]
\[\left\{ \begin{matrix} 6\sin x \bullet \cos y + 2\cos x \bullet \sin y = - 3 \\ 5\sin x \bullet \cos y - 3\cos x \bullet \sin y = 1\ \ \ \\ \end{matrix} \right.\ \]
\[u = \cos x \bullet \sin y;v = \cos y \bullet \sin x:\]
\[\left\{ \begin{matrix} 6v + 2u = - 3 \\ 5v - 3u = 1\ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} u = - \frac{3}{2} - 3v \\ 5v - 3u = 1\ \ \\ \end{matrix} \right.\ \]
\[5v - 3\left( - \frac{3}{2} - 3v \right) = 1\]
\[5v + \frac{9}{2} + 9v = 1\]
\[14v = 1 - 4,5\]
\[14v = - \frac{7}{2}\]
\[v = - \frac{1}{4};\]
\[u = - \frac{3}{2} - 3 \bullet \left( - \frac{1}{4} \right) =\]
\[= \frac{- 6 + 3}{4} = - \frac{3}{4}.\]
\[Получим:\]
\[\left\{ \begin{matrix} \cos x \bullet \sin y = - \frac{3}{4} \\ \cos y \bullet \sin x = - \frac{1}{4} \\ \end{matrix} \right.\ ( + )\]
\[\cos x \bullet \sin y + \cos y \bullet \sin x = - \frac{3}{4} - \frac{1}{4}\]
\[\sin(x + y) = - 1\]
\[x + y = - \arcsin 1 + 2\pi n\]
\[x + y = - \frac{\pi}{2} + 2\pi n\]
\[x = - \frac{\pi}{2} + 2\pi n - y.\]
\[\left\{ \begin{matrix} \cos x \bullet \sin y = - \frac{3}{4} \\ \cos y \bullet \sin x = - \frac{1}{4} \\ \end{matrix} \right.\ ( - )\]
\[\cos y \bullet \sin x - \cos x \bullet \sin y = - \frac{1}{4} + \frac{3}{4}\]
\[\sin(x - y) = \frac{1}{2}\]
\[x - y = ( - 1)^{k} \bullet \arcsin\frac{1}{2} + \pi k\]
\[x - y = ( - 1)^{k} \bullet \frac{\pi}{6} + \pi k.\]
\[Подставим\ x:\]
\[- \frac{\pi}{2} + 2\pi n - y - y = ( - 1)^{k} \bullet \frac{\pi}{6} + \pi k\]
\[- 2y = \frac{\pi}{2} + ( - 1)^{k} \bullet \frac{\pi}{6} + \pi k - 2\pi n\]
\[y = - \frac{\pi}{4} + ( - 1)^{k + 1} \bullet \frac{\pi}{12} - \frac{\text{πk}}{2} + \pi n;\]
\[x = - \frac{\pi}{2} + 2\pi n + \frac{\pi}{4} - ( - 1)^{k + 1} \bullet \frac{\pi}{12} + \frac{\text{πk}}{2} - \pi n\]
\[x = - \frac{\pi}{4} + ( - 1)^{k} \bullet \frac{\pi}{12} + \frac{\text{πk}}{2} + \pi n.\]
\[Ответ:\ \ \]