\[\boxed{\mathbf{1565}\mathbf{.}}\]
\[\frac{\sin{3x}}{\sin x} - \frac{\sin x}{\sin{3x}} = 2\cos{2x}\]
\[\frac{\sin^{3}{3x} - \sin^{2}x}{\sin x \bullet \sin{3x}} - 2\cos{2x} = 0\]
\[1)\ \cos{2x} = 0\]
\[2x = \arccos 0 + \pi n\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right)\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[2)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[3)\ 4\sin x \bullet \cos^{2}x - \sin{3x} = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Имеет\ смысл\ при:\]
\[\sin x \neq 0\]
\[x \neq \arcsin 0 + \pi n \neq \pi n.\]
\[\sin{3x} \neq 0\]
\[3x \neq \arcsin 0 + \pi n \neq \pi n\]
\[x \neq \frac{\text{πn}}{3}.\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]