\[\boxed{\mathbf{1552}\mathbf{.}}\]
\[1)\ y = (2x + 1)^{2} \bullet \sqrt{x - 1};\]
\[= (8x + 4) \bullet \sqrt{x - 1} + \frac{(2x + 1)^{2}}{2\sqrt{x - 1}} =\]
\[= \frac{2(8x + 4)(x - 1) + (2x + 1)^{2}}{2\sqrt{x - 1}} =\]
\[= \frac{16x^{2} - 16x + 8x - 8 + 4x^{2} + 4x + 1}{2\sqrt{x - 1}} =\]
\[= \frac{20x^{2} - 4x - 7}{2\sqrt{x - 1}}.\]
\[2)\ y = x^{2} \bullet \sqrt[3]{(x + 1)^{2}};\]
\[= \frac{2x \bullet 3(x + 1) + x^{2} \bullet 2}{3\sqrt[3]{x + 1}} =\]
\[= \frac{6x^{2} + 6x + 2x^{2}}{3\sqrt[3]{x + 1}} = \frac{8x^{2} + 6x}{3\sqrt[3]{x + 1}} =\]
\[= \frac{2x(4x + 3)}{3\sqrt[3]{x + 1}}.\]