\[\boxed{\mathbf{155.}}\]
\[1)\ \sqrt{x} - x = - 12\]
\[\sqrt{x} = x - 12\]
\[x = (x - 12)^{2}\]
\[x = x^{2} - 24x + 144\]
\[x^{2} - 25x + 144 = 0\]
\[D = 25^{2} - 4 \bullet 144 =\]
\[= 625 - 576 = 49\]
\[x_{1} = \frac{25 - 7}{2} = 9;\text{\ \ }\]
\[x_{2} = \frac{25 + 7}{2} = 16;\]
\[Уравнение\ имеет\ решения\ при:\]
\[x - 12 \geq 0\]
\[x \geq 12.\]
\[Ответ:\ \ x = 16.\]
\[2)\ x + \sqrt{x} = 2(x - 1)\]
\[\sqrt{x} = 2x - 2 - x\]
\[\sqrt{x} = x - 2\]
\[x = (x - 2)^{2}\]
\[x = x^{2} - 4x + 4\]
\[x^{2} - 5x + 4 = 0\]
\[D = 5^{2} - 4 \bullet 4 = 25 - 16 = 9\]
\[x_{1} = \frac{5 - 3}{2} = 1;\text{\ \ }x_{2} = \frac{5 + 3}{2} = 4.\]
\[Уравнение\ имеет\ решения\ при:\]
\[x - 2 \geq 0\]
\[x \geq 2\]
\[Ответ:\ \ x = 4.\]
\[3)\ \sqrt{x - 1} = x - 3\]
\[x - 1 = (x - 3)^{2}\]
\[x - 1 = x^{2} - 6x + 9\]
\[x^{2} - 7x + 10 = 0\]
\[D = 7^{2} - 4 \bullet 10 = 49 - 40 = 9\]
\[x_{1} = \frac{7 - 3}{2} = 2;\text{\ \ }x_{2} = \frac{7 + 3}{2} = 5.\]
\[Уравнение\ имеет\ решения\ при:\]
\[x - 3 \geq 0\]
\[x \geq 3.\]
\[Ответ:\ \ x = 5.\]
\[4)\ \sqrt{6 + x - x^{2}} = 1 - x\]
\[6 + x - x^{2} = (1 - x)^{2}\]
\[6 + x - x^{2} = 1 - 2x + x^{2}\]
\[2x^{2} - 3x - 5 = 0\]
\[D = 3^{2} + 4 \bullet 2 \bullet 5 = 9 + 40 = 49\]
\[x_{1} = \frac{3 - 7}{2 \bullet 2} = - \frac{4}{4} = - 1;\]
\[x_{2} = \frac{3 + 7}{2 \bullet 2} = \frac{10}{4} = 2,5.\]
\[Выражение\ имеет\ смысл\ при:\]
\[6 + x - x^{2} \geq 0;\]
\[x^{2} - x - 6 \leq 0;\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{1 + 5}{2} = 3.\]
\[(x + 2)(x - 3) \leq 0\]
\[- 2 \leq x \leq 3.\]
\[Уравнение\ имеет\ решения\ при:\]
\[1 - x \geq 0\]
\[x \leq 1.\]
\[Ответ:\ \ x = - 1.\]