\[\boxed{\mathbf{1517}\mathbf{.}}\]
\[y = x^{2};\ \ A\left( 2;\ \frac{1}{2} \right).\]
\[a\ и\ b - абсцисса\ и\ ордината\ \]
\[искомой\ точки:\]
\[b = a^{2}.\]
\[Расстояние\ между\ точками:\]
\[d(a) = \sqrt{(2 - a)^{2} + (0,5 - b)^{2}} =\]
\[= \sqrt{(2 - a)^{2} + \left( 0,5 - a^{2} \right)^{2}} =\]
\[= \sqrt{4 - 4a + a^{2} + 0,25 - a^{2} + a^{4}} =\]
\[= \sqrt{a^{4} - 4a + 4,25}.\]
\[u = a^{4} - 4a + 4,25;\ d(u) = \sqrt{u}:\]
\[d^{'}(a) = \left( a^{4} - 4a + 4,25 \right)^{'} \bullet \left( \sqrt{u} \right)^{'} =\]
\[= \left( 4a^{3} - 4 \right) \bullet \frac{1}{2\sqrt{u}} =\]
\[= \frac{2a^{3} - 2}{\sqrt{a^{4} - 4a + 4,25}}.\]
\[Промежуток\ возрастания:\]
\[2a^{3} - 2 > 0\]
\[a^{3} - 1 > 0\]
\[a^{3} > 1\]
\[a > 1.\]
\[a = 1 - точка\ минимума;\]
\[b = 1^{2} = 1.\]
\[Ответ:\ \ (1;\ 1).\]
\[\mathbf{1518}\mathbf{.}\]
\[A(3;\ - 1)\ и\ D(4;\ - 1);\]
\[лежат\ на\ y = - 1.\]
\[\text{AD} = 4 - 3 = 1.\]
\[x - абсцисса\ одной\ из\ вершин\ \]
\[второго\ основания;\]
\[( - x) - абсцисса\ второй\ точки\ \]
\[\left( y = 1 - x^{2} - четная\ функция \right);\]
\[BC = x - ( - x) = 2x - длина\ \]
\[второго\ основания;\]
\[h = y(x) - ( - 1) =\]
\[= \left( 1 - x^{2} \right) + 1 = 2 - x^{2}.\]
\[S(x) = \frac{1}{2}h \bullet (AD + BC) =\]
\[= \frac{1}{2} \bullet \left( 2 - x^{2} \right) \bullet (2x + 1) =\]
\[= \frac{1}{2} \bullet \left( 4x + 2 - 2x^{3} - x^{2} \right);\]
\[S^{'}(x) =\]
\[= \frac{1}{2} \bullet \left( (4x + 2)^{'} - 2\left( x^{3} \right)^{'} - \left( x^{2} \right)^{'} \right) =\]
\[= \frac{1}{2} \bullet \left( 4 - 2 \bullet 3x^{2} - 2x \right) =\]
\[= 2 - 3x^{2} - x.\]
\[Промежуток\ возрастания:\]
\[2 - 3x^{2} - x > 0\]
\[3x^{2} + x - 2 < 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2 \bullet 3} = - 1;\]
\[x_{2} = \frac{- 1 + 5}{2 \bullet 3} = \frac{4}{6} = \frac{2}{3};\]
\[(x + 1)\left( x - \frac{2}{3} \right) < 0\]
\[- 1 < x < \frac{2}{3}.\]
\[x = \frac{2}{3} - точка\ максимума;\]
\[S\left( \frac{2}{3} \right) = \frac{1}{2}\left( 4 \bullet \frac{2}{3} + 2 - 2 \bullet \frac{8}{27} - \frac{4}{9} \right) =\]
\[= \frac{49}{27} = 1\frac{22}{27}.\]
\[Ответ:\ \ 1\frac{22}{27}.\]