\[\boxed{\mathbf{151.}}\]
\[1)\ \sqrt{x} = 2\]
\[\left( \sqrt{x} \right)^{2} = 2^{2}\]
\[x = 4.\]
\[2)\ \sqrt{x} = 7\]
\[\left( \sqrt{x} \right)^{2} = 7^{2}\]
\[x = 49.\]
\[3)\ \sqrt[3]{x} = 2\]
\[\left( \sqrt[3]{x} \right)^{3} = 2^{3}\]
\[x = 8.\]
\[4)\ \sqrt[3]{x} = - 3\]
\[\left( \sqrt[3]{x} \right)^{3} = ( - 3)^{3}\]
\[x = - 27.\]
\[5)\ \sqrt[3]{1 - 3x} = 0\]
\[\left( \sqrt[3]{1 - 3x} \right)^{3} = 0^{3}\]
\[1 - 3x = 0\]
\[3x = 1\]
\[x = \frac{1}{3}.\]
\[6)\ \sqrt[4]{x} = 1\]
\[\left( \sqrt[4]{x} \right)^{4} = 1^{4}\]
\[x = 1.\]
\[7)\ \sqrt[4]{2 - x} = 0\]
\[\left( \sqrt[4]{2 - x} \right)^{4} = 0^{4}\]
\[2 - x = 0\]
\[x = 2.\]