\[\boxed{\mathbf{1504}\mathbf{.}}\]
\[1)\ y = \frac{x^{2} + 1}{x^{2} - 1};\]
\[= \frac{2x \bullet \left( x^{2} - 1 \right) - \left( x^{2} + 1 \right) \bullet 2x}{\left( x^{2} - 1 \right)^{2}} =\]
\[= \frac{2x \bullet \left( x^{2} - 1 - x^{2} - 1 \right)}{\left( x^{2} - 1 \right)^{2}};\]
\[= \frac{2x \bullet ( - 2)}{\left( x^{2} - 1 \right)^{2}} = \frac{- 4x}{\left( x^{2} - 1 \right)^{2}}.\]
\[Промежуток\ возрастания:\]
\[- 4x > 0\]
\[x < 0.\]
\[Имеет\ смысл\ при:\]
\[x^{2} - 1 \neq 0\]
\[x^{2} \neq 1\]
\[x \neq \pm 1.\]
\[Ответ:\ \ \]
\[возрастает\ на\ ( - \infty;\ - 1) \cup ( - 1;\ 0);\]
\[убывает\ на\ (0;\ 1) \cup (1;\ + \infty).\]
\[2)\ y = \frac{x^{2} - 1}{x}\]
\[y^{'}(x) =\]
\[= \frac{\left( x^{2} - 1 \right)^{'} \bullet x - \left( x^{2} - 1 \right) \bullet (x)^{'}}{x^{2}} =\]
\[= \frac{2x \bullet x - \left( x^{2} - 1 \right) \bullet 1}{x^{2}} =\]
\[= \frac{2x^{2} - x^{2} + 1}{x^{2}} = \frac{x^{2} + 1}{x^{2}} > 0.\]
\[Имеет\ смысл\ при:\]
\[x \neq 0.\]
\[Ответ:\ \ \]
\[возрастает\ на\ ( - \infty;\ 0) \cup (0;\ + \infty).\]