\[\boxed{\mathbf{1491}\mathbf{.}}\]
\[1)\ f(x) = \frac{1}{4x^{2}} - \sqrt{x}\text{\ \ }и\ \ x_{0} = 1;\]
\[f^{'}(x) = \frac{1}{4}\left( x^{- 2} \right)^{'} - \left( x^{\frac{1}{2}} \right)^{'} =\]
\[= \frac{1}{4} \bullet \left( - 2x^{- 3} \right) - \frac{1}{2}x^{- \frac{1}{2}} =\]
\[= - \frac{1}{2x^{3}} - \frac{1}{2\sqrt{x}};\]
\[tg\ a = f^{'}(1) = - \frac{1}{2 \bullet 1^{3}} - \frac{1}{2 \bullet \sqrt{1}} =\]
\[= - \frac{1}{2} - \frac{1}{2} = - 1;\]
\[a = arctg\ ( - 1) =\]
\[= - arctg\ 1 = - \frac{\pi}{4}.\]
\[Ответ:\ \ a = - \frac{\pi}{4}.\]
\[2)\ f(x) = 2x\sqrt{x}\text{\ \ }и\ \ x_{0} = \frac{1}{3};\]
\[f^{'}(x) = 2\left( x^{\frac{3}{2}} \right)^{'} = 2 \bullet \frac{3}{2} \bullet x^{\frac{1}{2}} = 3\sqrt{x};\]
\[tg\ a = f^{'}\left( \frac{1}{3} \right) = 3 \bullet \sqrt{\frac{1}{3}} = \sqrt{\frac{9}{3}} = \sqrt{3};\]
\[a = arctg\ \sqrt{3} = \frac{\pi}{3}.\]
\[Ответ:\ \ a = \frac{\pi}{3}.\]