\[\boxed{\mathbf{1480}\mathbf{.}}\]
\[y = \sqrt{25 - x^{2}};\]
\[y( - x) = \sqrt{25 - ( - x)^{2}} =\]
\[= \sqrt{25 - x^{2}} = y(x);\]
\[функция\ четная.\]
\[Что\ и\ требовалось\ доказать.\]
\[Область\ определения:\]
\[25 - x^{2} \geq 0\]
\[x^{2} \leq 25\]
\[- 5 \leq x \leq 5\]
\[D(x) = \lbrack - 5;\ 5\rbrack.\]
\[u = 25 - x^{2} \rightarrow y(u) = \sqrt{u}:\]
\[y^{'}(x) = \left( 25 - x^{2} \right)^{'} \bullet \left( \sqrt{u} \right)^{'} =\]
\[= (0 - 2x) \bullet \frac{1}{2\sqrt{y}} = \frac{- x}{\sqrt{26 - x^{2}}}.\]
\[Стационарные\ точки:\]
\[x = 0;\]
\[y(0) = \sqrt{25 - 0^{2}} = \sqrt{25} = 5.\]
\[Критические\ точки:\]
\[y( \pm 5) = \sqrt{25 - ( \pm 5)^{2}} =\]
\[= \sqrt{25 - 25} = 0.\]
\[Возрастает\ на\ \lbrack - 5;\ 0\rbrack;\]
\[убывает\ на\ \lbrack 0;\ 5\rbrack.\]