\[\boxed{\mathbf{1476}\mathbf{.}}\]
\[y = ax^{2} + bx - 4;\]
\[y(1) = 0;\ y(4) = 0:\]
\[\left\{ \begin{matrix} 0 = a \bullet 1^{2} + b \bullet 1 - 4 \\ 0 = a \bullet 4^{2} + b \bullet 4 - 4 \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} a + b - 4 = 0\ \ \ \ \ \ \ \\ 16a + 4b - 4 = 0 \\ \end{matrix} \right.\ \ \]
\[\left\{ \begin{matrix} b = 4 - a\ \ \ \ \ \ \ \\ 16a + 4b = 4 \\ \end{matrix} \right.\ \]
\[16a + 4(4 - a) = 4\]
\[16a + 16 - 4a = 4\]
\[12a = - 12\]
\[a = - 1;\]
\[b = 4 - ( - 1) = 4 + 1 = 5.\]
\[Наибольшее\ значение:\]
\[x_{0} = - \frac{b}{2a} = \frac{- 5}{2 \bullet ( - 1)} = \frac{5}{2};\]
\[y\left( x_{0} \right) = - 1 \bullet \left( \frac{5}{2} \right)^{2} + 5 \bullet \frac{5}{2} - 4 =\]
\[= - \frac{25}{4} + \frac{50}{4} - \frac{16}{4} = \frac{9}{4} = 2,25.\]
\[Ответ:\ \ y_{\max} = 2,25.\]