\[\boxed{\mathbf{1426}\mathbf{.}}\]
\[1)\ \left\{ \begin{matrix} 2^{x + y} = 32\ \ \\ 3^{3y - x} = 27 \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} 2^{x + y} = 2^{5}\text{\ \ } \\ 3^{3y - x} = 3^{3} \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} x + y = 5\ \ \\ 3y - x = 3 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 5 - y\ \ \\ x = 3y - 3 \\ \end{matrix} \right.\ \]
\[5 - y = 3y - 3\]
\[- 4y = - 8\]
\[y = 2;\]
\[x = 5 - 2 = 3.\]
\[Ответ:\ \ (3;\ 2).\]
\[2)\ \left\{ \begin{matrix} 3^{x} - 2^{2y} = 77 \\ 3^{\frac{x}{2}} - 2^{y} = 7\ \ \ \ \\ \end{matrix} \right.\ \]
\[a = 3^{\frac{x}{2}};\text{\ \ }b = 2^{y}:\]
\[\left\{ \begin{matrix} a^{2} - b^{2} = 77 \\ a - b = 7\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} a^{2} - b^{2} - 77 = 0 \\ a = 7 + b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(7 + b)^{2} - b^{2} - 77 = 0\]
\[49 + 14b + b^{2} - b^{2} - 77 = 0\]
\[14b - 28 = 0\]
\[b - 2 = 0\]
\[b = 2;\]
\[a = 7 + 2 = 9.\]
\[1)\ 3^{\frac{x}{2}} = 9\]
\[3^{\frac{x}{2}} = 3^{2}\]
\[\frac{x}{2} = 2\]
\[x = 4.\]
\[2)\ 2^{y} = 2\]
\[y = 1.\]
\[Ответ:\ \ (4;\ 1).\]
\[3)\ \left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 576\ \ \ \ \ \ \ \\ \log_{\sqrt{2}}(y - x) = 4 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 9 \bullet 64\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{\sqrt{2}}(y - x) = \log_{\sqrt{2}}\left( \sqrt{2} \right)^{4} \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 3^{2} \bullet 2^{6} \\ y - x = 4\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 3^{2} \bullet 2^{6} \\ y = x + 4\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[3^{x} \bullet 2^{x + 4} = 3^{2} \bullet 2^{6}\]
\[3^{x} \bullet 2^{x} = 3^{2} \bullet 3^{2}\]
\[x = 2;\]
\[y = 2 + 4 = 6.\]
\[Ответ:\ \ (2;\ 6).\]
\[4)\ \left\{ \begin{matrix} \lg x + \lg y = 4 \\ x^{\lg y} = 1000\ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \lg\text{xy} = \lg 10^{4}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \log_{x}x^{\lg y} = \log_{x}1000 \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} xy = 10^{4}\text{\ \ \ \ \ \ \ \ \ \ } \\ \lg y = \log_{x}10^{3} \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} y = \frac{10^{4}}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \lg y = \log_{x}10^{3} \\ \end{matrix} \right.\ \]
\[\lg\frac{10^{4}}{x} = \log_{x}10^{3}\]
\[\lg 10^{4} - \lg x = \frac{\lg 10^{3}}{\lg x}\]
\[4 - \lg x = \frac{3}{\lg x}\ \ \ \ \ | \bullet \lg x\]
\[4\lg x - \lg^{2}x = 3\]
\[a = \lg x:\]
\[4a - a^{2} = 3\]
\[a^{2} - 4a + 3 = 0\]
\[D = 16 - 12 = 4\]
\[a_{1} = \frac{4 - 2}{2} = 1;\]
\[a = \frac{4 + 2}{2} = 3.\]
\[1)\ \lg x = 1;\]
\[\lg x = \lg 10^{1}\]
\[x = 10;\]
\[y = \frac{10^{4}}{10} = 10^{3} = 1000.\]
\[2)\ \lg x = 3\]
\[\lg x = \lg 10^{3}\]
\[x = 1000;\]
\[y = \frac{10^{4}}{1000} = 10.\]
\[Ответ:\ \ (10;\ 1000);\ \ (1000;\ 10).\]