\[\boxed{\mathbf{1423}\mathbf{.}}\]
\[1)\ \left\{ \begin{matrix} y + 5 = x^{2}\text{\ \ \ \ } \\ x^{2} + y^{2} = 25 \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2} - 5\ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + y^{2} - 25 = 0 \\ \end{matrix} \right.\ \]
\[x^{2} + \left( x^{2} - 5 \right)^{2} - 25 = 0\]
\[x^{2} + x^{4} - 10x^{2} + 25 - 25 = 0\]
\[x^{4} - 9x^{2} = 0\]
\[x^{2} \bullet \left( x^{2} - 9 \right) = 0\]
\[(x + 3) \bullet x^{2} \bullet (x - 3) = 0\]
\[x_{1} = - 3;\ \ x_{2} = 0;\ \ x_{3} = 3;\]
\[y_{1} = ( - 3)^{2} - 5 = 9 - 5 = 4;\]
\[y_{2} = 0^{2} - 5 = - 5;\]
\[y_{3} = (3)^{2} - 5 = 9 - 5 = 4.\]
\[Ответ:\ \ \]
\[( - 3;\ 4);\ \ (0;\ - 5);\ \ (3;\ 4).\]
\[2)\ \left\{ \begin{matrix} xy = 16 \\ \frac{x}{y} = 4\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} x = \frac{16}{y} \\ x = 4y \\ \end{matrix} \right.\ \]
\[\frac{16}{y} = 4y\ \ \ \ \ | \bullet y\]
\[16 = 4y^{2}\]
\[y^{2} = 4\]
\[y = \pm 2;\]
\[x_{1} = 4 \bullet ( - 2) = - 8;\]
\[x_{2} = 4 \bullet 2 = 8.\]
\[Ответ:\ \ ( - 8;\ - 2);\ \ (8;\ 2).\]
\[3)\ \left\{ \begin{matrix} x^{2} + 2y^{2} = 96 \\ x = 2y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(2y)^{2} + 2y^{2} = 96\]
\[4y^{2} + 2y^{2} = 96\]
\[6y^{2} = 96\]
\[y^{2} = 16\]
\[y = \pm 4;\]
\[x_{1} = 2 \bullet ( - 4) = - 8;\]
\[x_{2} = 2 \bullet 4 = 8.\]
\[Ответ:\ \ ( - 8;\ - 4);\ \ (8;\ 4).\]