\[\boxed{\mathbf{1420}\mathbf{.}}\]
\[1)\ \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq 3;\]
\[a > 0,\ \ \ b > 0,\ \ \ c > 0:\]
\[\frac{1}{3} \bullet \left( \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) \geq 1\]
\[\frac{1}{3} \bullet \left( \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) \geq \sqrt[3]{\frac{a}{b} \bullet \frac{b}{c} \bullet \frac{c}{a}}.\]
\[Среднее\ арифметическое\ не\ \]
\[меньше\ среднего\ \]
\[геометрического.\]
\[Неравенство\ доказано.\]
\[2)\ 2a^{2} + b^{2} + c^{2} \geq 2a(b + c)\]
\[2a^{2} + b^{2} + c^{2} \geq 2ab + 2ac\]
\[a^{2} - 2ab + b^{2} + a^{2} - 2ac + c^{2} \geq 0\]
\[(a - b)^{2} + (a - c)^{2} \geq 0.\]
\[Неравенство\ доказано.\]