Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 1414

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 1414

\[\boxed{\mathbf{1414}\mathbf{.}}\]

\[1)\ x^{1 + \lg x} < {0,1}^{- 2}\]

\[x \bullet x^{\lg x} < 100\]

\[x < 1:\]

\[\log_{x}x + \log_{x}x^{\lg x} > \log_{x}100\]

\[1 + \lg x > \frac{\lg 100}{\lg x}\]

\[1 + \lg x > \frac{2}{\lg x}\ \ \ \ \ | \bullet \lg x\]

\[\lg x + \lg^{2}x < 2.\]

\[x > 1:\]

\[\log_{x}x + \log_{x}x^{\lg x} < \log_{x}100\]

\[1 + \lg x < \frac{\lg 100}{\lg x}\]

\[1 + \lg x < \frac{2}{\lg x}\ \ \ \ \ | \bullet \lg x\]

\[\lg x + \lg^{2}x < 2\]

\[y = \lg x:\]

\[y + y^{2} < 2\]

\[y^{2} + y - 2 < 0\]

\[D = 1 + 8 = 9\]

\[y_{1} = \frac{- 1 - 3}{2} = - 2;\]

\[y_{2} = \frac{- 1 + 3}{2} = 1;\]

\[(y + 2)(y - 1) < 0\]

\[- 2 < y < 1.\]

\[1)\ \lg x > - 2\]

\[\lg x > \lg 10^{- 2}\]

\[x > 0,01.\]

\[2)\ \lg x < 1\]

\[\lg x < \lg 10^{1}\]

\[x < 10.\]

\[Имеет\ смысл\ при:\]

\[x > 0.\]

\[Ответ:\ \ 0,01 < x < 10.\]

\[2)\ \sqrt{x^{4\lg x}} < 10x\]

\[x^{2\lg x} < 10x\]

\[x < 1:\]

\[2\log_{x}x^{\lg x} > \log_{x}10 + \log_{x}x\]

\[2\lg x > \frac{\lg 10}{\lg x} + 1\]

\[2\lg x > \frac{1}{\lg x} + 1\ \ \ \ \ | \bullet \lg x\]

\[2\lg^{2}x < 1 + \lg x.\]

\[x > 1:\]

\[2\log_{x}x^{\lg x} < \log_{x}10 + \log_{x}x\]

\[2\lg x < \frac{\lg 10}{\lg x} + 1\]

\[2\lg x < \frac{1}{\lg x} + 1\ \ \ \ \ | \bullet \lg x\]

\[2\lg^{2}x < 1 + \lg x\]

\[y = \lg x:\]

\[2y^{2} < 1 + y\]

\[2y^{2} - y - 1 < 0\]

\[D = 1 + 8 = 9\]

\[y_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{1}{2};\]

\[y_{2} = \frac{1 + 3}{2 \bullet 2} = 1;\]

\[\left( y + \frac{1}{2} \right)(y - 1) < 0\]

\[- \frac{1}{2} < y < 1.\]

\[1)\ \lg x > - \frac{1}{2}\]

\[\lg x > \lg 10^{- \frac{1}{2}}\]

\[x > \frac{1}{\sqrt{10}}.\]

\[2)\ \lg x < 1\]

\[\lg x < \lg 10^{1}\]

\[x < 10.\]

\[Имеет\ смысл\ при:\]

\[x > 0.\]

\[Ответ:\ \ \frac{1}{\sqrt{10}} < x < 10.\]

\[3)\ x + 3 > \log_{3}\left( 26 + 3^{x} \right)\]

\[\log_{3}3^{x + 3} > \log_{3}\left( 26 + 3^{x} \right)\]

\[3^{x + 3} > 26 + 3^{x}\]

\[3^{x + 3} - 3^{x} > 26\]

\[3^{x} \bullet \left( 3^{3} - 3^{0} \right) > 26\]

\[3^{x} \bullet (27 - 1) > 26\]

\[3^{x} \bullet 26 > 26\]

\[3^{x} > 1\]

\[3^{x} > 3^{0}\]

\[x > 0.\]

\[Имеет\ смысл\ при:\]

\[26 + 3^{x} > 0\]

\[при\ любом\ \text{x.}\]

\[Ответ:\ \ x > 0.\]

\[4)\ 3 - x < \log_{5}\left( 20 + 5^{x} \right)\]

\[\log_{5}5^{3 - x} < \log_{5}\left( 20 + 5^{x} \right)\]

\[5^{3 - x} < 20 + 5^{x}\]

\[\frac{5^{3}}{5^{x}} - 20 - 5^{x} < 0\]

\[\frac{125 - 20 \bullet 5^{x} - 5^{2x}}{5^{x}} < 0\]

\[125 - 20 \bullet 5^{x} - 5^{2x} < 0\]

\[y = 5^{x}:\]

\[125 - 20y - y^{2} < 0\]

\[y^{2} + 20y - 125 > 0\]

\[D = 400 + 500 = 900\]

\[y_{1} = \frac{- 20 - 30}{2} = - 25;\]

\[y_{2} = \frac{- 20 + 30}{2} = 5;\]

\[(y + 25)(y - 5) > 0\]

\[y < - 25\ \ и\ \ y > 5.\]

\[1)\ 5^{x} < - 25\]

\[корней\ нет.\]

\[2)\ 5^{x} > 5\]

\[x > 1.\]

\[Имеет\ смысл\ при:\]

\[20 + 5^{x} > 0\]

\[при\ любом\ \text{x.}\]

\[Ответ:\ \ x > 1.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам