Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 1405

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 1405

\[\boxed{\mathbf{1405}\mathbf{.}}\]

\[1)\ 2^{2x} - 4^{x - 1} + 8^{\frac{2}{3}x} \bullet 2^{- 4} > 52\]

\[2^{2x} - \left( 2^{2} \right)^{x - 1} + \left( 2^{3} \right)^{\frac{2}{3}x} \bullet 2^{- 4} > 52\]

\[2^{2x} - 2^{2x - 2} + 2^{2x - 4} > 52\]

\[2^{2x} \bullet \left( 2^{0} - 2^{- 2} + 2^{- 4} \right) > 52\]

\[2^{2x} \bullet \left( 1 - \frac{1}{4} + \frac{1}{16} \right) > 52\]

\[2^{2x} \bullet \frac{16 - 4 + 1}{16} > 52\]

\[2^{2x} \bullet \frac{13}{16} > 52\]

\[2^{2x} > 64\]

\[2^{2x} > 2^{6}\]

\[2x > 6\]

\[x > 3.\]

\[Ответ:\ \ x > 3.\]

\[2)\ 2^{x + 2} - 2^{x + 3} + 5^{x - 2} > 5^{x + 1} + 2^{x + 4}\]

\[2^{x + 2} - 2^{x + 3} - 2^{x + 4} > 5^{x + 1} - 5^{x - 2}\]

\[2^{x} \bullet \left( 2^{2} - 2^{3} - 2^{4} \right) > 5^{x} \bullet \left( 5^{1} - 5^{- 2} \right)\]

\[2^{x} \bullet (4 - 8 - 16) > 5^{x} \bullet \left( 5 - \frac{1}{25} \right)\]

\[2^{x} \bullet ( - 20) > 5^{x} \bullet \frac{124}{25}\]

\[\frac{2^{x}}{5^{x}} < - \frac{31}{125}\]

\[корней\ нет.\]

\[Ответ:\ \ решений\ нет.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам