\[\boxed{\mathbf{1398}\mathbf{.}}\]
\[\frac{\frac{1}{2}x^{2} + 3}{x^{2} - 9x + 14} < 0\]
\[x^{2} - 9x + 14 = 0\]
\[D = 81 - 56 = 25\]
\[x_{1} = \frac{9 - 5}{2} = 2;\]
\[x_{2} = \frac{9 + 5}{2} = 7;\]
\[(x - 2)(x - 7) = 0.\]
\[Получим:\]
\[\frac{\frac{1}{2}x^{2} + 3}{(x - 2)(x - 7)} < 0\]
\[(x - 2)(x - 7) < 0\]
\[2 < x < 7.\]
\[Ответ:\ \ при\ x = 6.\]