\[\boxed{\mathbf{1389}\mathbf{.}}\]
\[1)\ \frac{5x - 4}{7x + 5} > 0\]
\[(7x + 5)(5x - 4) > 0\]
\[x < - \frac{5}{7}\text{\ \ }и\ \ x > \frac{4}{5}.\]
\[Ответ:\ \ \]
\[x \in \left( - \infty;\ - \frac{5}{7} \right) \cup \left( \frac{4}{5};\ + \infty \right).\]
\[2)\ \frac{3x + 10}{40 - x} > 0\]
\[(3x + 10)(40 - x) > 0\]
\[(3x + 10)(x - 40) < 0\]
\[- 3\frac{1}{3} < x < 40.\]
\[Ответ:\ \ x \in \left( - 3\frac{1}{3};\ 40 \right).\]
\[3)\ \frac{x + 2}{5 - 4x} > 0\]
\[(x + 2)(5 - 4x) > 0\]
\[(x + 2)(4x - 5) < 0\]
\[- 2 < x < 1,25.\]
\[Ответ:\ \ x \in ( - 2;\ 1,25).\]
\[4)\ \frac{8 - x}{6 + 3x} > 0\]
\[(6 + 3x)(8 - x) > 0\]
\[(6 + 3x)(x - 8) < 0\]
\[- 2 < x < 8.\]
\[Ответ:\ \ x \in ( - 2;\ 8).\]