\[\boxed{\mathbf{1380}\mathbf{.}}\]
\[1)\sin x + \sin{5x} = \sin{3x}\]
\[2 \bullet \sin\frac{5x + x}{2} \bullet \cos\frac{5x - x}{2} - \sin{3x} = 0\]
\[2 \bullet \sin{3x} \bullet \cos{2x} - \sin{3x} = 0\]
\[\sin{3x} \bullet \left( 2\cos{2x} - 1 \right) = 0\]
\[\sin{3x} = 0\]
\[3x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{\text{πn}}{3}.\]
\[2\cos{2x} - 1 = 0\]
\[2\cos{2x} = 1\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[2x = \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ \frac{\text{πn}}{3};\ \ \pm \frac{\pi}{6} + \pi n.\]
\[2)\cos{7x} - \cos{3x} = 3\sin{5x}\]
\[- 2 \bullet \sin\frac{7x + 3x}{2} \bullet \sin\frac{7x - 3x}{2} - 3\sin{5x} = 0\]
\[- 2 \bullet \sin{5x} \bullet \sin{2x} - 3\sin{5x} = 0\]
\[- \sin{5x} \bullet \left( 2\sin{2x} + 3 \right) = 0\]
\[\sin{5x} = 0\]
\[5x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{\text{πn}}{5}.\]
\[2\sin{2x} + 3 = 0\]
\[2\sin{2x} = - 3\]
\[\sin{2x} = - \frac{3}{2}\]
\[корней\ нет.\]
\[Ответ:\ \ \frac{\text{πn}}{5}.\]