\[\boxed{\mathbf{1377}\mathbf{.}}\]
\[1)\sin^{3}x \bullet \cos x + \cos^{3}x \bullet \sin x = \cos{2x}\]
\[\sin x \bullet \cos x \bullet \left( \sin^{2}x + \cos^{2}x \right) =\]
\[= \cos^{2}x - \sin^{2}x\]
\[tg\ x - 1 + tg^{2}\ x = 0\]
\[tg^{2}\ x + tg\ x - 1 = 0\]
\[D = 1 + 4 = 5:\]
\[tg\ x = \frac{- 1 \pm \sqrt{5}}{2}\]
\[x = arctg\frac{- 1 \pm \sqrt{5}}{2} + \pi n.\]
\[Ответ:\ \ arctg\frac{- 1 \pm \sqrt{5}}{2} + \pi n.\]
\[2)\ 2 + \cos^{2}x + 3\sin x \bullet \cos x = \sin^{2}x\]
\[3 + tg^{2}\ x + 3\ tg\ x = 0\]
\[tg^{2}\ x + 3\ tg\ x + 3 = 0\]
\[D = 9 - 12 = - 3 < 0\]
\[корней\ нет.\]
\[Ответ:\ \ решений\ нет.\]