\[\boxed{\mathbf{1347}\mathbf{.}}\]
\[1)\ \left( \frac{4}{9} \right)^{x} \bullet \left( \frac{27}{8} \right)^{x - 1} = \frac{2}{3}\]
\[\left( \frac{2^{2}}{3^{2}} \right)^{x} \bullet \left( \frac{3^{3}}{2^{3}} \right)^{x - 1} = \frac{2}{3}\]
\[\left( \frac{2}{3} \right)^{2x} \bullet \left( \frac{2}{3} \right)^{- 3(x - 1)} = \frac{2}{3}\]
\[2x - 3(x - 1) = 1\]
\[2x - 3x + 3 = 1\]
\[- x = - 2\]
\[x = 2.\]
\[Ответ:\ \ x = 2.\]
\[2)\ \sqrt[3]{2^{x}} \bullet \sqrt[3]{3^{x}} = 216\]
\[2^{\frac{x}{3}} \bullet 3^{\frac{x}{3}} = 6^{3}\]
\[6^{\frac{x}{3}} = 6^{3}\]
\[\frac{x}{3} = 3\]
\[x = 9.\]
\[Ответ:\ \ x = 9.\]