\[\boxed{\mathbf{1345}\mathbf{.}}\]
\[1)\ 5^{2x + 5} \bullet 7^{3x + 1} = 35^{\frac{1}{2}(5x + 6)}\]
\[5^{2x + 5} \bullet 7^{3x + 1} = (5 \bullet 7)^{2,5x + 3}\]
\[\frac{5^{2,5x + 3} \bullet 7^{2,5x + 3}}{5^{2x + 5} \bullet 7^{3x + 1}} = 1\]
\[5^{0,5x - 2} \bullet 7^{- 0,5x + 2} = 1\]
\[\frac{5^{0,5x}}{7^{0,5x}} \bullet \frac{7^{2}}{5^{2}} = 1\]
\[\frac{5^{0,5x}}{7^{0,5x}} = \frac{5^{2}}{7^{2}}\]
\[0,5x = 2\]
\[x = 4.\]
\[Ответ:\ \ x = 4.\]
\[2)\ {0,2}^{x^{2}} \bullet 5^{2x + 2} = \left( \frac{1}{5} \right)^{6}\]
\[\left( \frac{1}{5} \right)^{x^{2}} \bullet 5^{2x + 2} = 5^{- 6}\]
\[5^{- x^{2}} \bullet 5^{2x + 2} = 5^{- 6}\]
\[- x^{2} + 2x + 2 = - 6\]
\[x^{2} - 2x - 8 = 0\]
\[D = 4 + 32 = 36\]
\[x_{1} = \frac{2 - 6}{2} = - 2;\]
\[x_{2} = \frac{2 + 6}{2} = 4.\]
\[Ответ:\ \ x_{1} = - 2;\ \ x_{2} = 4.\]