\[\boxed{\mathbf{1342}\mathbf{.}}\]
\[1)\ \sqrt{2x + 7} = x + 2\]
\[2x + 7 = x^{2} + 4x + 4\]
\[x^{2} + 2x - 3 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{- 2 - 4}{2} = - 3;\]
\[x_{2} = \frac{- 2 + 4}{2} = 1.\]
\[Имеет\ смысл\ при:\]
\[2x + 7 \geq 0\]
\[2x \geq - 7\]
\[x \geq - 3,5.\]
\[Имеет\ решения\ при:\]
\[x + 2 \geq 0\]
\[x \geq - 2.\]
\[Ответ:\ \ x = 1.\]
\[{2)\ x = 2 - \sqrt{2x - 5} }{\sqrt{2x - 5} = 2 - x}\]
\[2x - 5 = 4 - 4x + x^{2}\]
\[x^{2} - 6x + 9 = 0\]
\[(x - 3)^{2} = 0\]
\[x - 3 = 0\]
\[x = 3.\]
\[Имеет\ смысл\ при:\]
\[2x - 5 \geq 0\]
\[2x \geq 5\]
\[x \geq 2,5.\]
\[Имеет\ решения\ при:\]
\[2 - x \geq 0\]
\[x \leq 2.\]
\[Ответ:\ \ корней\ нет.\]