\[\boxed{\mathbf{1320}\mathbf{.}}\]
\[\sin x \bullet \left( 3\cos^{2}x - \sin^{2}x \right) = \sin{3x}\]
\[\sin x \bullet \left( 3 - 3\sin^{2}x - \sin^{2}x \right) = \sin{3x}\]
\[\sin x \bullet \left( 3 - 4\sin^{2}x \right) = \sin{3x}\]
\[3\sin x - 4\sin^{3}x = \sin{3x}\]
\[Тождество\ доказано.\]
\[2)\cos{3x} \bullet \cos{6x} \bullet \cos{12x} = \frac{\sin{24x}}{8\sin{3x}}\]
\[Умножим\ на\ 8\sin{3x}:\]
\[4 \bullet \sin{6x} \bullet \cos{6x} \bullet \cos{12x} = \sin{24x}\]
\[2 \bullet \sin{12x} \bullet \cos{12x} = \sin{24x}\]
\[\sin{24x} = \sin{24x}.\]
\[Тождество\ доказано.\]