\[\boxed{\mathbf{1311}\mathbf{.}}\]
\[\frac{2 - 3\sin^{2}a}{\cos{2a}} - \frac{\sin a + 2\cos a}{\sin a + \cos a};\]
\[a = - \frac{\pi}{8}.\]
\[\frac{2 - 3\sin^{2}a}{\cos{2a}} - \frac{\sin a + 2\cos a}{\sin a + \cos a} =\]
\[= \frac{\sin a \bullet \cos a}{\cos{2a}} = \frac{\frac{1}{2}\sin{2a}}{\cos{2a}} = \frac{1}{2}tg\ 2a.\]
\[Подставим:\]
\[\frac{1}{2}tg\ 2a = \frac{1}{2} \bullet tg\left( - \frac{2\pi}{8} \right) =\]
\[= \frac{1}{2} \bullet \left( - tg\frac{\pi}{4} \right) = - \frac{1}{2} \bullet 1 = - \frac{1}{2}.\]
\[Ответ:\ \ - \frac{1}{2}.\]