\[\boxed{\mathbf{1307}\mathbf{.}}\]
\[1)\ \frac{\cos{4a} - \cos{2a}}{\sin{3a} \bullet \sin a} =\]
\[= \frac{\cos{4a} - \cos{2a}}{\frac{1}{2} \bullet \left( \cos\frac{3a - a}{2} - \cos\frac{3a + a}{2} \right)} =\]
\[= \frac{2 \bullet \left( \cos{4a} - \cos{2a} \right)}{\cos{2a} - \cos{4a}} =\]
\[= - 2 \bullet \frac{\cos{2a} - \cos{4a}}{\cos{2a} - \cos{4a}} = - 2.\]
\[2)\ \frac{1 + \cos a + \cos{2a} + \cos{3a}}{\cos a + 2\cos^{2}a - 1} =\]
\[= \frac{2\cos^{2}a + 2\cos{2a} \bullet \cos a}{\cos a + \cos{2a}} =\]
\[= \frac{2\cos a \bullet \left( \cos a + \cos{2a} \right)}{\cos a + \cos{2a}} =\]
\[= 2\cos a.\]