\[\boxed{\mathbf{1299}\mathbf{.}}\]
\[1)\ \frac{1 - tg^{2}\left( \frac{\pi}{4} - a \right)}{1 + tg^{2}\left( \frac{\pi}{4} - a \right)} =\]
\[= \frac{\cos\left( \frac{2\pi}{4} - 2a \right)}{\cos^{2}\left( \frac{\pi}{4} - a \right)} \bullet \frac{\cos^{2}\left( \frac{\pi}{4} - a \right)}{1} =\]
\[= \cos\left( \frac{\pi}{2} - 2a \right) = \sin{2a};\]
\[2)\ \frac{\sin{2a}}{1 + \cos{2a}} =\]
\[= \frac{2\sin a \bullet \cos a}{\cos^{2}a + \sin^{2}a + \cos^{2}a - \sin^{2}a} =\]
\[= \frac{2\sin a \bullet \cos a}{2\cos^{2}a} = \frac{\sin a}{\cos a} = tg\ a.\]