\[\boxed{\mathbf{1297}\mathbf{.}}\]
\[1)\ \frac{\cos a + \sin a}{\cos a - \sin a} - tg\left( \frac{\pi}{4} + a \right) =\]
\[= \frac{\frac{\cos a}{\cos a} + \frac{\sin a}{\cos a}}{\frac{\cos a}{\cos a} - \frac{\sin a}{\cos a}} - \frac{\text{tg}\frac{\pi}{4} + tg\ a}{1 - tg\frac{\pi}{4} \bullet tg\ a} =\]
\[= \frac{1 + tg\ a}{1 - tg\ a} - \frac{1 + tg\ a}{1 - tg\ a} = 0;\]
\[2)\ tg^{2}\left( \frac{\pi}{2} - a \right) - \frac{1 - \cos{2a}}{1 + \cos{2a}} =\]
\[= ctg^{2}\ a - \frac{1 - \cos{2a}}{1 + \cos{2a}} =\]
\[= \frac{\cos^{2}a}{\sin^{2}a} - \frac{1 - \cos{2a}}{1 + \cos{2a}} =\]
\[= \frac{\cos{2a} + \cos{2a} \bullet 1}{0,5 \bullet 4\sin^{2}a \bullet \cos^{2}a} =\]
\[= \frac{2\cos{2a}}{0,5\sin^{2}{2a}} = \frac{4\cos{2a}}{\sin^{2}{2a}}.\]