\[\boxed{\mathbf{1294}\mathbf{.}}\]
\[a + \beta + \gamma = \pi.\]
\[1)\sin\alpha + \sin\beta - \sin\gamma =\]
\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2};\]
\[\gamma = \pi - (\alpha + \beta)\]
\[\alpha + \beta = \pi - \gamma.\]
\[4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2} =\]
\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\left( \frac{\pi}{2} - \frac{\alpha + \beta}{2} \right) =\]
\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\left( \frac{\alpha}{2} + \frac{\beta}{2} \right) =\]
\[= \sin\alpha + \sin\beta - \sin(\alpha + \beta) =\]
\[\sin\alpha + \sin\beta - \sin(\pi - \gamma) =\]
\[= \sin\alpha + \sin\beta - \sin\gamma.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} =\]
\[= 4\sin\alpha\sin\beta\sin\gamma;\]
\[a + \beta = \pi - \gamma;\]
\[\alpha + \gamma = \pi - \beta;\]
\[\beta + \gamma = \pi - \alpha.\]
\[\sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} =\]
\[= 4\sin\gamma \bullet \cos\left( \frac{\pi}{2} - \beta \right) \bullet \cos\left( \alpha - \frac{\pi}{2} \right) =\]
\[= 4\sin\gamma \bullet \sin\beta \bullet \sin\alpha.\]
\[Что\ и\ требовалось\ доказать.\]