\[\boxed{\mathbf{1288}\mathbf{.}}\]
\[1)\ \frac{1 + tg^{2}\text{\ a}}{1 + ctg^{2}\text{\ a}} =\]
\[= \left( 1 + tg^{2}\text{\ a} \right)\ :\left( 1 + \frac{1}{tg^{2}\text{\ a}} \right) =\]
\[= \left( 1 + tg^{2}\text{\ a} \right)\ :\left( \frac{tg^{2}\ a + 1}{tg^{2}\text{\ a}} \right) =\]
\[= \left( 1 + tg^{2}\text{\ a} \right) \bullet \frac{tg^{2}\text{\ a}}{tg^{2}\ a + 1} = tg^{2}\ a;\]
\[= \frac{\left( \sin a + \cos a \right)^{2} - 1}{\sin a \bullet \cos a} =\]
\[= \frac{\sin^{2}a + \cos^{2}a + 2\sin a \bullet \cos a - 1}{\sin a \bullet \cos a} =\]
\[= \frac{1 + 2\sin a \bullet \cos a - 1}{\sin a \bullet \cos a} = 2.\]