\[\boxed{\mathbf{1283}\mathbf{.}}\]
\[1)\ \left( \frac{a\sqrt{a} - 1}{\sqrt{a} - 1} + \sqrt{a} \right)\ :\frac{a - 1}{\sqrt{a} - 1} =\]
\[= \frac{a\sqrt{a} - 1 + \sqrt{a} \bullet \left( \sqrt{a} - 1 \right)}{\sqrt{a} - 1} \bullet \frac{\sqrt{a} - 1}{a - 1} =\]
\[= \frac{a\sqrt{a} - 1 + a - \sqrt{a}}{a - 1} =\]
\[= \frac{\sqrt{a} \bullet (a - 1) + (a - 1)}{a - 1} =\]
\[= \frac{(\sqrt{a} + 1)(a - 1)}{a - 1} = \sqrt{a} + 1;\]
\[2)\ \left( \frac{1 + b\sqrt{b}}{1 + \sqrt{b}} - \sqrt{b} \right) \bullet \frac{1 + \sqrt{b}}{1 - b} =\]
\[= \frac{1 + b\sqrt{b} - \sqrt{b} \bullet \left( 1 + \sqrt{b} \right)}{1 + \sqrt{b}} \bullet \frac{1 + \sqrt{b}}{1 - b} =\]
\[= \frac{1 + b\sqrt{b} - \sqrt{b} - b}{1 - b} =\]
\[= \frac{(1 - b) - \sqrt{b} \bullet (1 - b)}{1 - b} =\]
\[= \frac{(1 - b)\left( 1 - \sqrt{b} \right)}{1 - b} = 1 - \sqrt{b}.\]