\[\boxed{\mathbf{1130}\mathbf{.}}\]
\[n = C_{20}^{2} = \frac{20!}{(20 - 2)! \bullet 2!} =\]
\[= \frac{20!}{18! \bullet 2} = \frac{20 \bullet 19 \bullet 18!}{18! \bullet 2} =\]
\[= 10 \bullet 19 = 190.\]
\[1)\ обе\ детали\ оказались\ \]
\[бракованными:\]
\[m = C_{3}^{2} = \frac{3!}{(3 - 2)! \bullet 2!} = \frac{3!}{1! \bullet 2!} =\]
\[= \frac{3 \bullet 2!}{2!} = 3;\]
\[P = \frac{m}{n} = \frac{3}{190}.\]
\[2)\ одна\ деталь\ бракованная,\ \]
\[а\ другая\ нет:\]
\[m = C_{3}^{1} \bullet C_{17}^{1} =\]
\[= \frac{3!}{(3 - 1)! \bullet 1!} \bullet \frac{17!}{(17 - 1)! \bullet 1!} =\]
\[= \frac{3!}{2!} \bullet \frac{17!}{16!} = 3 \bullet 17 = 51;\]
\[P = \frac{m}{n} = \frac{51}{190}.\]
\[3)\ обе\ детали\ оказались\ \]
\[не\ бракованными:\]
\[m = C_{17}^{2} = \frac{17!}{(17 - 2)! \bullet 2!} =\]
\[= \frac{17!}{15! \bullet 2} = \frac{17 \bullet 16 \bullet 15!}{15! \bullet 2} =\]
\[= 17 \bullet 8 = 136;\]
\[P = \frac{m}{n} = \frac{136}{190} = \frac{68}{95}.\]