\[\boxed{\mathbf{1078}\mathbf{.}}\]
\[1)\ \frac{A_{9}^{n} \bullet P_{10 - n}}{P_{8}};\ \ \ n \leq 9:\]
\[\frac{A_{9}^{n} \bullet P_{10 - n}}{P_{8}} =\]
\[= \frac{\frac{9!}{(9 - n)!} \bullet (10 - n)!}{8!} =\]
\[= \frac{\frac{9 \bullet 8!}{(9 - n)!} \bullet (10 - n) \bullet (9 - n)!}{8!} =\]
\[= 9 \bullet (10 - n) = 90 - 9n.\]
\[2)\ \frac{P_{12}}{A_{13}^{n} \bullet P_{14 - n}};\ \ n \leq 13:\]
\[\frac{P_{12}}{A_{13}^{n} \bullet P_{14 - n}} =\]
\[= \frac{12!}{\frac{13!}{(13 - n)!} \bullet (14 - n)!} =\]
\[= \frac{1}{13 \bullet (14 - n)} = \frac{1}{182 - 13n}.\]