\[\boxed{\mathbf{105}\mathbf{.}}\]
\[1)\ \frac{ab^{\frac{3}{2}} - b^{\frac{1}{2}}}{a^{\frac{1}{2}}b^{\frac{1}{2}} - 1} = \frac{b^{\frac{1}{2}} \bullet \left( ab^{\frac{2}{2}} - 1 \right)\ }{a^{\frac{1}{2}}b^{\frac{1}{2}} - 1} =\]
\[= \frac{b^{\frac{1}{2}} \bullet \left( a^{\frac{1}{2}}b^{\frac{1}{2}} - 1 \right)\left( a^{\frac{1}{2}}b^{\frac{1}{2}} + 1 \right)}{a^{\frac{1}{2}}b^{\frac{1}{2}} - 1} =\]
\[= b^{\frac{1}{2}} \bullet \left( a^{\frac{1}{2}}b^{\frac{1}{2}} + 1 \right) =\]
\[= a^{\frac{1}{2}}b^{\frac{1}{2} + \frac{1}{2}} + b^{\frac{1}{2}} = a^{\frac{1}{2}}b + b^{\frac{1}{2}} =\]
\[= b\sqrt{a} + \sqrt{b}\]
\[2)\ \frac{b}{a - b} + \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}} + b^{\frac{1}{2}}} =\]
\[= \frac{b + b^{\frac{1}{2}} \bullet \left( a^{\frac{1}{2}} - b^{\frac{1}{2}} \right)}{\left( a^{\frac{1}{2}} - b^{\frac{1}{2}} \right)\left( a^{\frac{1}{2}} + b^{\frac{1}{2}} \right)} =\]
\[= \frac{b + a^{\frac{1}{2}}b^{\frac{1}{2}} - b^{\frac{1}{2} + \frac{1}{2}}}{a - b} =\]
\[= \frac{b + a^{\frac{1}{2}}b^{\frac{1}{2}} - b}{a - b} = \frac{a^{\frac{1}{2}}b^{\frac{1}{2}}}{a - b} = \frac{\sqrt{\text{ab}}}{a - b}\]