\[\boxed{\mathbf{1027}\mathbf{.}}\]
\[1)\ y^{'} = 3 - 4x;\]
\[y(x) = 3 \bullet \frac{x^{1}}{1} - 4 \bullet \frac{x^{2}}{2} =\]
\[= 3x - 2x^{2} + C.\]
\[2)\ y^{'} = 6x^{2} - 8x + 1;\]
\[y(x) = 6 \bullet \frac{x^{3}}{3} - 8 \bullet \frac{x^{2}}{2} + 1 \bullet \frac{x^{1}}{1} =\]
\[= 2x^{3} - 4x^{2} + x + C.\]
\[3)\ y^{'} = 3e^{2x};\]
\[y(x) = 3 \bullet \frac{1}{2} \bullet e^{2x} = \frac{3}{2}e^{2x} + C.\]
\[4)\ y^{'} = 4\cos{2x};\]
\[y(x) = 4 \bullet \frac{1}{2} \bullet \sin{2x} =\]
\[= 2\sin{2x} + C.\]
\[5)\ y^{'} = 3\sin x;\]
\[y(x) = 3 \bullet \left( - \cos x \right) =\]
\[= - 3\cos x + C.\]
\[6)\ y^{'} = \cos x - \sin x;\]
\[y(x) = \sin x - \left( - \cos x \right) =\]
\[= \sin x + \cos x + C.\]