\[\boxed{\mathbf{1019}\mathbf{.}}\]
\[1)\ y = \sin x\ на\ отрезке\ \lbrack 0;\ \pi\rbrack\ и\ \]
\[точки\ (0;\ 0)\ и\ \left( \frac{\pi}{2};\ 1 \right);\]
\[\left\{ \begin{matrix} 0 = k \bullet 0 + b \\ 1 = k \bullet \frac{\pi}{2} + b \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} b = 0\ \ \ \ \ \ \\ 1 = k \bullet \frac{\pi}{2} \\ \end{matrix} \right.\ \]
\[\frac{\text{kπ}}{2} = 1 \rightarrow \ k = \frac{2}{\pi};\]
\[y = \frac{2}{\pi}x;\]
\[\textbf{а)}\ \sin x > 0\]
\[2\pi n < x < \pi + 2\pi n.\]
\[0 < x < \pi.\]
\[\textbf{б)}\ \frac{2}{\pi}x > 0\ \]
\[x > 0.\]
\[S = \int_{0}^{\frac{\pi}{2}}{\frac{2}{\pi}\text{x\ dx}} + \int_{\frac{\pi}{2}}^{\pi}{\sin x\text{dx}} =\]
\[= \left. \ \left( \frac{2}{\pi} \bullet \frac{x^{2}}{2} \right) \right|_{0}^{\frac{\pi}{2}} + \left. \ \left( - \cos x \right) \right|_{\frac{\pi}{2}}^{\pi} =\]
\[= \left. \ \frac{x^{2}}{\pi} \right|_{0}^{\frac{\pi}{2}} + \left. \ \left( - \cos x \right) \right|_{\frac{\pi}{2}}^{\pi} =\]
\[= \frac{\pi}{4} - \cos\pi + \cos\frac{\pi}{2} =\]
\[= \frac{\pi}{4} + 1 + 0 = 1 + \frac{\pi}{4}.\]
\[Ответ:\ \ 1 + \frac{\pi}{4}.\]
\[2)\ y = \sin x;\ \ \ y = \cos x\ \]
\[на\ отрезке\ \left\lbrack 0;\ \frac{\pi}{2} \right\rbrack;\]
\[\sin x = \cos x\ \ \ \ \ |\ :\cos x\]
\[tg\ x = 1\]
\[x = arctg\ 1 + \pi n\]
\[x = \frac{\pi}{4} + \pi n\ \]
\[x = \frac{\pi}{4}.\]
\[\textbf{а)}\ \sin x > 0\]
\[2\pi n < x < \pi + 2\pi n\]
\[0 < x < \frac{\pi}{2}.\]
\[\textbf{б)}\ \cos x > 0\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n\]
\[0 < x < \frac{\pi}{2}.\]
\[S = \int_{0}^{\frac{\pi}{4}}{\sin x\text{dx}} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\cos x\text{dx}} =\]
\[= \left. \ \left( - \cos x \right) \right|_{0}^{\frac{\pi}{4}} + \left. \ \left( \sin x \right) \right|_{\frac{\pi}{4}}^{\frac{\pi}{2}} =\]
\[= - \frac{\sqrt{2}}{2} + 1 + 1 - \frac{\sqrt{2}}{2} = 2 - \sqrt{2}.\]
\[Ответ:\ \ 2 - \sqrt{2}.\]