\[\boxed{\mathbf{1012}\mathbf{.}}\]
\[\int_{1}^{b}{(b - 4x)\ dx \geq 6 - 5b},\ \]
\[где\ b > 1.\]
\[\int_{1}^{b}{(b - 4x)\text{\ dx}} =\]
\[= \left. \ \left( b \bullet \frac{x^{1}}{1} - 4 \bullet \frac{x^{2}}{2} \right) \right|_{1}^{b} =\]
\[= \left. \ \left( bx - 2x^{2} \right) \right|_{1}^{b} =\]
\[= b \bullet b - 2 \bullet b^{2} - b \bullet 1 + 2 \bullet 1^{2} =\]
\[= b^{2} - 2b^{2} - b + 2 =\]
\[= 2 - b^{2} - b.\]
\[Неравенство\ выполняется\ при:\]
\[2 - b^{2} - b \geq 6 - 5b\]
\[b^{2} + b - 2 \leq 5b - 6\]
\[b^{2} - 4b + 4 \leq 0\]
\[(b - 2)^{2} \leq 0.\]
\[b - 2 = 0\ \]
\[b = 2.\]
\[Ответ:\ \ b = 2.\]