Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 927

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 927

\[\boxed{\mathbf{927}\mathbf{.}}\]

\[1)\ y = - x^{4} + 8x^{2} - 16\]

\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) =\]

\[= - \left( x^{4} \right)^{'} + 8 \bullet \left( x^{2} \right)^{'} - (16)^{'};\]

\[y^{'}(x) = - 4x^{3} + 8 \bullet 2x - 0 =\]

\[= - 4x^{3} + 16x;\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[16x - 4x^{3} = 0\]

\[4x \bullet \left( 4 - x^{2} \right) = 0\]

\[(2 + x) \bullet 4x \bullet (2 - x) = 0\]

\[x_{1} = - 2,\ \ \ x_{2} = 0,\ \ \ x_{3} = 2.\]

\[\textbf{г)}\ f( \pm 2) =\]

\[= - ( \pm 2)^{4} + 8 \bullet ( \pm 2)^{2} - 16 =\]

\[= - 16 + 32 - 16 = 0;\]

\[f(0) = - 0^{4} + 8 \bullet 0^{2} - 16 =\]

\[= - 16.\]

\[\textbf{д)}\ Возрастает\ на\ \]

\[( - \infty;\ - 2) \cup (0;\ 2)\ и\ убывает\ \]

\[на\ ( - 2;\ 0) \cup (2;\ + \infty);\]

\[x = 0 - точка\ минимума;\ \ \]

\[x = \pm 2 - точки\ максимума.\]

\[\textbf{е)}\ \]

\[x\] \[x < - 2\] \[- 2\] \[- 2 < x < 0\] \[0\] \[0 < x < 2\] \[2\] \[x > 2\]
\[f^{'}(x)\] \[+\] \[0\] \[-\] \[0\] \[+\] \[0\] \[-\]
\[f(x)\] \[\nearrow\] \[0\] \[\searrow\] \[- 16\] \[\nearrow\] \[0\] \[\searrow\]

\[2)\ y = x^{4} - 2x^{2} + 2\]

\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) =\]

\[= \left( x^{4} \right)^{'} - 2 \bullet \left( x^{2} \right)^{'} + (2)';\]

\[y^{'}(x) = 4x^{3} - 2 \bullet 2x + 0 =\]

\[= 4x^{3} - 4x;\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[4x \bullet \left( x^{2} - 1 \right) = 0\]

\[(x + 1) \bullet 4x \bullet (x - 1) = 0\]

\[x_{1} = - 1,\ \ \ x_{2} = 0,\ \ \ x_{3} = 1.\]

\[\textbf{г)}\ f( \pm 1) =\]

\[= ( \pm 1)^{4} - 2 \bullet ( \pm 1)^{2} + 2 =\]

\[= 1 - 2 + 2 = 1;\]

\[f(0) = 0^{4} - 2 \bullet 0^{2} + 2 = 2.\]

\[\textbf{д)}\ Возрастает\ \]

\[на\ ( - 1;\ 0) \cup (1;\ + \infty)\ и\ убывает\ \]

\[на\ ( - \infty;\ - 1) \cup (0;\ 1);\]

\[x = \pm 1 - точки\ минимума;\ \ \]

\[x = 0 - точка\ максимума.\]

\[\textbf{е)}\ \]

\[x\] \[x < - 1\] \[- 1\] \[- 1 < x < 0\] \[0\] \[0 < x < 1\] \[1\] \[x > 1\]
\[f^{'}(x)\] \[-\] \[0\] \[+\] \[0\] \[-\] \[0\] \[+\]
\[f(x)\] \[\searrow\] \[1\] \[\nearrow\] \[2\] \[\searrow\] \[1\] \[\nearrow\]

\[3)\ y = \frac{1}{4}x^{4} - \frac{1}{24}x^{6}\]

\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) = \frac{1}{4} \bullet \left( x^{4} \right)^{'} - \frac{1}{24} \bullet \left( x^{6} \right)^{'};\]

\[y^{'}(x) = \frac{1}{4} \bullet 4x^{3} - \frac{1}{24} \bullet 6x^{5} =\]

\[= x^{3} - \frac{1}{4}x^{5}.\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[x^{3} - \frac{1}{4}x^{5} = 0\]

\[x^{3} \bullet \left( 1 - 0,25x^{2} \right) = 0\]

\[(1 + 0,5x) \bullet x \bullet (1 - 0,5x) = 0\]

\[x_{1} = - 2,\ \ \ x_{2} = 0,\ \ \ x_{3} = 2.\]

\[\textbf{г)}\ f( \pm 2) =\]

\[= \frac{1}{4} \bullet ( \pm 2)^{4} - \frac{1}{24} \bullet ( \pm 2)^{6} =\]

\[= \frac{16}{4} - \frac{64}{24} = \frac{4}{3} = 1\frac{1}{3};\]

\[f(0) = \frac{1}{4} \bullet 0^{4} - \frac{1}{24} \bullet 0^{6} = 0.\]

\[\textbf{д)}\ Возрастает\ \]

\[на\ ( - \infty;\ - 2) \cup (0;\ 2)\ и\ убывает\ \]

\[на\ ( - 2;\ 0) \cup (2;\ + \infty);\]

\[x = 0 - точка\ минимума;\ \ \]

\[x = \pm 2 - точки\ максимума.\]

\[\textbf{е)}\ \]

\[x\] \[x < - 2\] \[- 2\] \[- 2 < x < 0\] \[0\] \[0 < x < 2\] \[2\] \[x > 2\]
\[f^{'}(x)\] \[+\] \[0\] \[-\] \[0\] \[+\] \[0\] \[-\]
\[f(x)\] \[\nearrow\] \[1\frac{1}{3}\] \[\searrow\] \[0\] \[\nearrow\] \[1\frac{1}{3}\] \[\searrow\]

\[4)\ y = 6x^{4} - 4x^{6}\]

\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) = 6 \bullet \left( x^{4} \right)^{'} - 4 \bullet \left( x^{6} \right)^{'};\]

\[y^{'}(x) = 6 \bullet 4x^{3} - 4 \bullet 6x^{5} =\]

\[= 24x^{3} - 24x^{5}.\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[24x^{3} - 24x^{5} = 0\]

\[24x^{3} \bullet \left( 1 - x^{2} \right) = 0\]

\[(1 + x) \bullet x \bullet (1 - x) = 0\]

\[x_{1} = - 1,\ \ \ x_{2} = 0,\ \ \ x_{3} = 1.\]

\[\textbf{г)}\ f( \pm 1) =\]

\[= 6 \bullet ( \pm 1)^{4} - 4 \bullet ( \pm 1)^{6} =\]

\[= 6 - 4 = 2;\]

\[f(0) = 6 \bullet 0^{4} - 4 \bullet 0^{6} = 0.\]

\[\textbf{д)}\ Возрастает\ на\ \]

\[( - \infty;\ - 1) \cup (0;\ 1)\ и\ убывает\ \]

\[на\ ( - 1;\ 0) \cup (1;\ + \infty);\]

\[x = 0 - точка\ минимума;\ \ \]

\[x = \pm 1 - точки\ максимума.\]

\[\textbf{е)}\ \]

\[x\] \[x < - 1\] \[- 1\] \[- 1 < x < 0\] \[0\] \[0 < x < 1\] \[1\] \[x > 1\]
\[f^{'}(x)\] \[+\] \[0\] \[-\] \[0\] \[+\] \[0\] \[-\]
\[f(x)\] \[\nearrow\] \[2\] \[\searrow\] \[0\] \[\nearrow\] \[2\] \[\searrow\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам