815.
1) f(x)=x2−1x2+1
f′(x)=
=(x2−1)′∙(x2+1)−(x2−1)∙(x2+1)′(x2+1)2=
=2x∙(x2+1)−(x2−1)∙2x(x2+1)2=
=2x3+2x−2x3+2x(x2+1)2=
=4x(x2+1)2
f′(1)=4(12+1)2=422=44=1.
ОтветОтвет: 1.
2) f(x)=2x21−7x
=(2x2)′∙(1−7x)−2x2∙(1−7x)′(1−7x)2=
=2∙2x∙(1−7x)−2x2∙(−7)(1−7x)2=
=4x−28x2+14x2(1−7x)2=
=4x−14x2(1−7x)2
f′(1)=4−14∙12(1−7)2=4−14(−6)2=
=−1036=−518.
ОтветОтвет: −518.