\[\boxed{\mathbf{774}\mathbf{.}}\]
\[1)\ y = 12\sin x - 5\cos x\]
\[\sin\left( \arccos\frac{12}{13} \right) = \frac{5}{13}\]
\[\sin\left( \arccos\frac{12}{13} \right) =\]
\[= \sqrt{1 - \cos^{2}\left( \arccos\frac{12}{13} \right)} =\]
\[= \sqrt{1 - \left( \frac{12}{13} \right)^{2}} = \sqrt{\frac{169}{169} - \frac{144}{169}} =\]
\[= \sqrt{\frac{25}{169}} = \frac{5}{13}.\]
\[y = 13\left( \frac{12}{13}\sin x - \frac{5}{13}\cos x \right) =\]
\[= 13 \bullet \sin\left( \arccos\frac{12}{13} - x \right) =\]
\[= 13\sin\varphi\ \ \varphi = \arccos\frac{12}{13} - x.\]
\[Область\ значений:\]
\[- 1 \leq \sin\varphi \leq 1\]
\[- 13 \leq 13\sin\varphi \leq 13.\]
\[Ответ:\ \ E(y) = \lbrack - 13\ 13\rbrack.\]
\[2)\ y = \cos^{2}x - \sin x =\]
\[= 1 - \sin^{2}x - \sin x =\]
\[= - \sin^{2}x - \sin x - \frac{1}{4} + \frac{5}{4} =\]
\[= - \left( \sin^{2}x + 2 \bullet \frac{1}{2}\sin x + \frac{1}{4} \right) + \frac{5}{4} =\]
\[= - \left( \sin x + \frac{1}{2} \right)^{2} + \frac{5}{4}.\]
\[Область\ значений:\]
\[- 1 \leq \sin x \leq 1\]
\[- \frac{1}{2} \leq \sin x + \frac{1}{2} \leq \frac{3}{2}\]
\[0 \leq \left( \sin x + \frac{1}{2} \right)^{2} \leq \frac{9}{4}\]
\[- \frac{9}{4} \leq - \left( \sin x + \frac{1}{2} \right)^{2} \leq 0\]
\[- 1 \leq - \left( \sin x + \frac{1}{2} \right)^{2} \leq \frac{5}{4}.\]
\[Ответ:\ \ E(y) = \left\lbrack - 1\ \frac{5}{4} \right\rbrack.\]